ORGANOMETALLIC COMPOUNDS XXXI*. PMR SPECTRA OF TETRAORGANOTINS

M. GIELEN AND M. DE CLERCQ

Université Libre de Bruxelles, Faculté des Sciences, Collectif de Chimie Organique Physique, Av. F. D. Roosevelt 50, B-1050 Bruxelles (Belgium)

B. DE POORTER

Vrije Universiteit Brussel, Fakulteit der Toegepaste Wetenschuppen, Dienst: Algemene en Organische Scheikunde, Ad. Buyllaan 105, B-1050 Brussel (Belgium)

(Received July 16th, 1971)

SUMMARY

The NMR study of a large number of mixed tetraorganotins shows that the $J vs. \Sigma \sigma^*$ relationship is invalid, even in the mixed tetraalkyltin series. Malinovski's additivity rule may be used to predict tin-methyl, tin-benzyl and tin-tert-butyl coupling constants.

INTRODUCTION

The linear relationship between $J(Sn-CH_3)$ and the % s character is well known² and has been used to evaluate valence angles³. An identical relationship exists for the $J(Sn-CH_2C_6H_5)$ coupling⁴, but seems to be less exact for $J(Sn-CH_2 (CH_3)^5$, or even for $J(Sn-CH_3)$ in methyltin halides⁶. The coupling constant thus depends on all the factors which influence the hybridization of the atomic orbitals of the tin atom, and linear relationships between J and the sum of Taft's σ^* of the substituents bound to the tin atom⁷ seem unsatisfactory. We have already shown that these linear relationships are not valid if one includes phenyl-³ or benzyltin⁴ compounds. There is other evidence against these relationships: in meso-dimethyl $bis(\alpha$ -methylbenzyl)tin, the two methyl groups which are diastereoisomeric are characterized by two different coupling constants, which are different from the $J(Sn-CH_3)$ coupling constant of the analogous *dl*-mixture⁸. On the other hand, the $J(Sn-CH_3)$ coupling constant of dimethyldianisyltin is identical to that of dimethyldiphenyltin⁹ and, similarly, $J(Sn-CH_3)$ is the same in trimethylbenzyltin and trimethyl-p-(fluorobenzyl)tin (¹¹⁷Sn-CH₃ 50.8 Hz). Furthermore, the NMR spectrum of 1,1-dimethyl-1-stanna-4-tert-butylcyclohexane exhibits (in addition to the expected tert-butyl singlet) two methyl peaks, at 0.097 and 0.087 ppm, respectively, with $J(^{119}SnCH_3)$ equal to 52.1 and 53.9 Hz²⁰.

We will show that the J vs. $\Sigma \sigma^*$ relationship is not satisfactory even in the mixed tetraalkyltin series.

^{*} For Part XXX, see ref. 1.

J. Organometal. Chem., 34 (1972)

306

TABLE 1

Compound	J(¹¹⁷ SnCH ₃) (Hz)	J_{calc}^{117} (Hz)	J(¹¹⁹ SnCH ₃) (Hz)	δ (CH₃) (ppm)	Σσ*	Ref.
Me₄Sn	52.0	[51.9]	54.3	0.057	0.00	3
Me ₃ SnPh	52.3	[52.3]	54.7	0.267	0.60	3
Me ₂ SnPh ₂	52.6	52.7	55.0	0.475	1.2	12
MeSnPh ₃	53.4	53.1	55.7	0.676	1.8	3, 12, 21
Me ₂ Sn-cyclo-HexPh	48.8	49.0	51.1	0.215	0.45	
MeSn-cyclo-Hex ₂ Ph	45.3	45.7	47.3	0.153	0.30	
MeSn-cyclo-HexPh ₂	49.2	49.4	51.4	0.420	1.05	
Me ₃ Sn-cyclo-Hex	48.6	[48.6]	50.8		0.15	3
Me ₂ Sn-cyclo-Hex ₂	45.4	45.3	47.5		-0.30	
MeSn-cyclo-Hex ₃	42.0	42.0	43.9		-0.45	
Me ₂ -t-BuSnBenz	~46.3	46.3	48.5	0.041	-0.085	
Me-t-BuSnBenz ₂	44.8	45.2	46.8	-0.176	+0.130	
Me-t-Bu ₂ SnBenz	41.9	41.8	43.8	0.163	-0.385	
Me ₃ Sn-t-Bu	47.5	[47.4]	49.7	0.000	-0.30	12, 22
Me ₂ Sn-t-Bu ₂	42.9	42.9	44.9	-0.053	-0.60	
MeSn-t-Bu ₃	38.4	38.4	40.2		-0.90	
Me ₂ -t-BuSn-cyclo-Hex	44.2	44.1	46.1	-0.080	-0.45	13
Me-t-BuSn-cyclo-Pent	44.8	44.6	46.7	0.068	-0.50	13
Me ₃ Sn-cyclo-Pent	49.1	[49.1]	51.4		-0.20	
Me ₂ Sn-cyclo-Pent ₂	46.4	46.3 [¯]	48.4		-0.40	
MeSn-cyclo-Pent ₃	43.7	43.5	45.7		-0.60	

NMR SPECTRA OF THE METHYL PART OF MIXED TETRAORGANOTINS

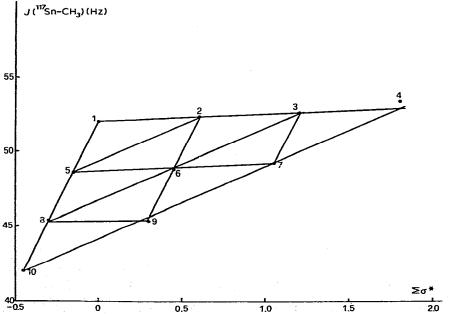


Fig. 1. $J(^{117}Sn-C^{1}H_{3})$ coupling constants as a function of $\Sigma\sigma^{*}$ for mixed cyclohexylmethylphenyltin compounds. 1, Me₄Sn; 2, Me₃SnPh; 3, Me₂SnPh₂; 4, MeSnPh₃; 5, Me₃Sn-cyclo-hex; 6, Me₂Sn-cyclo-HexPh; 7, MeSn-cyclo-HexPh₂; 8, Me₂Sn-cyclo-Hex₂; 9, MeSn-cyclo-Hex₂Ph; 10, MeSn-cyclo-Hex₃.

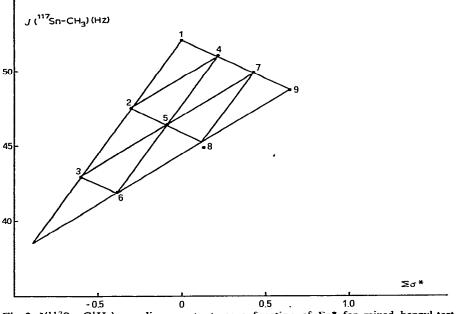


Fig. 2. $J(^{117}Sn-C^{1}H_{3})$ coupling constants as a function of $\Sigma\sigma^{*}$ for mixed benzyl-tert-butylmethyltin compounds. 1, Me₄Sn; 2, Me₃Sn-t-Bu; 3, Me₂Sn-t-Bu₂; 4, Me₃SnBenz (ref. 10); 5, Me₂-t-BuSnBenz; 6, Me-t-Bu₂SnBenz; 7, Me₂SnBenz₂ (ref. 10); 8, Me-t-BuSnBenz₂; 9, MeSnBenz₃ (ref. 10).

TABLE 2

 χ (SnCH₃), κ (SnCH₂Ph) and ζ [SnC(CH₃)₃]-values for different groups

χ-value	κ -value	ζ-value 20.9	
17.3	20.1		
16.2	18.9	22.2	
14.0	16.8	17.5	
14.5		18.4	
17.7	21.6		
12.8	15.7	17.0	
15.6	18.2	19.1	
14.2	16.8		
	17.3 16.2 14.0 14.5 17.7 12.8 15.6	17.3 20.1 16.2 18.9 14.0 16.8 14.5 17.7 17.7 21.6 12.8 15.7 15.6 18.2	

RESULTS AND DISCUSSION

The $J(Sn-CH_3)$ coupling constant

Table 1 lists NMR data for the methyl entity in a series of mixed tetraorganotins. Figs. 1 and 2 show that the $J vs. \Sigma \sigma^*$ relationship is not linear, except for a series of closely related compounds such as $Me_{4-n}SnR_n$. [Sisido¹⁰ has already expressed J as a function of the number n of phenyl groups for the series with R = Ph.] Fig. 3 shows clearly that a linear $J vs. \Sigma \sigma^*$ relationship is not valid even for mixed alkyl compounds.

These graphical representations are in fact illustrations of the additivity rule

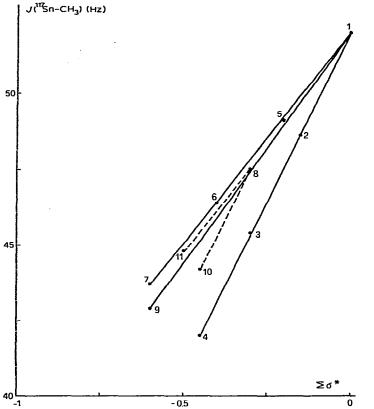


Fig. 3. $J(^{117}Sn-C^{1}H_{3})$ coupling constants as a function of $\Sigma\sigma^{*}$ for mixed tetraalkyltin compounds. Vector sum determination of the $J(SnCH_{3})$ coupling constant of cyclohexyl- and cyclopentyl-tert-butyldimethyltins. 1, Me₄Sn; 2, Me₃Sn-cyclo-Hex; 3, Me₂Sn-cyclo-Hex₂; 4, MeSn-cyclo-Hex₃; 5, Me₃Sn-cyclo-Pent; 6, Me₂Sn-cyclo-Pent₂; 7, MeSn-cyclo-Pent₃; 8, Me₃Sn-t-Bu₂; 9, Me₂Sn-t-Bu₂; 10, Me₂-t-BuSn-cyclo-Hex; 11, Me₂-t-BuSn-cyclo-Pent.

proposed by Malinovski¹¹. This rule may be put in the algebraic form: $\chi_R = J(Sn-CH_3)$ [CH₃-SnRMe₂]-2 χ_{Me} ; so that

$$\chi_{\rm Me} = \frac{J({\rm Sn-CH}_3) \left[{\rm CH}_3 {\rm SnMe}_3\right]}{3}.$$

The χ -values derived in this way are given in Table 2.

Values of $J(^{117}SnCH_3)$ calculated from the χ -values (J_{calc}^{117}) are listed in Table 1.

The dynamic molecules

From the coupling constants given in Table 1, it is possible to calculate angles for molecules having C_{2v} or C_{3v} symmetry³: one finds that the MeSnR angle is 111°13' for trimethylcyclohexyltin, 111°00' for trimethylcyclopentyltin, 107°38' for tricyclohexylmethyltin, and 107°57' for tricyclopentylmethyltin; the MeSnMe angle is 106°11' for dimethyldicyclohexyltin and 106°41' for dimethyldicyclopentyltin; the RSnR angle is 113°08' for Me₂Sn-cyclo-Hex₂, and 112°32' for the analogous dicyclopentyl derivative.

Gutovsky¹⁴ has pointed out that J-values calculated from the angles of static molecules (J_{stat}) can be different from the mean coupling constants $\langle J \rangle$ taking bending motions into account. If we apply Gutovsky's calculations to the organotin molecules, with a bending motion of C-Sn-C of about 5°, it is possible to compare the relationship between J_{stat} and θ , the C-Sn-C angle, with that between $\langle J \rangle$ and θ :

$$J_{\text{stat}}(\phi) = b - \frac{a}{\cos^2 \phi}$$
, (ref. 3) where $\theta = \phi + \frac{\pi}{2}$, $a = 138.5$ and $b = 208$

$$\langle J \rangle = \frac{\int_{\phi_1}^{\phi_2} J_{\text{stat}}(\phi) \, \mathrm{d}\phi}{\phi_2 - \phi_1} = b - \frac{a}{\phi_2 - \phi_1} (\mathrm{tg}\phi_2 - \mathrm{tg}\phi_1)$$

It will be seen that the difference $\langle J \rangle - J_{\text{stat}}$ is < 0.2 Hz for mean angles varying from 106° to 114° (ref. 15) which shows that Gutovsky's objection is not valid in this case.

The $J(Sn-CH_2C_6H_5)$ coupling constant

An analogous $J vs. \Sigma \sigma^*$ graph may be drawn up for the benzyltin coupling constants (see Fig. 4). The κ values (analogous to the χ values for the methyl groups),

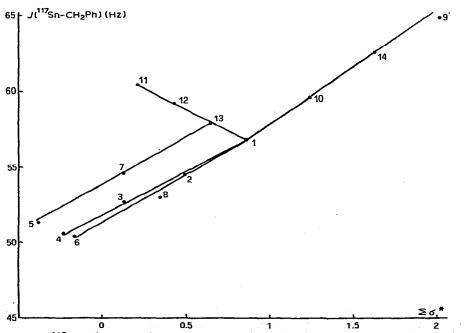


Fig. 4. $J(^{117}Sn-C^1H_2-C_6H_5)$ coupling constants as a function of $\Sigma\sigma^*$ for mixed tetraorganotins. 1, Benz₄-Sn (ref. 10); 2, Benz₃Sn-cyclo-Hex; 3, Benz₂Sn-cyclo-Hex₂; 4, BenzSn-cyclo-Hex₃; 5, BenzSn-t-Bu₂Me; 6, Benz₂Sn-t-Bu₂; 7, Benz₂Sn-t-BuMe; 8, Benz₃Sn-t-Bu; 9, BenzSnPh₃; 10, Benz₃SnPh; 11, BenzSnMe₃ (ref. 10); 12, Benz₂SnMe₂ (ref. 10); 13, Benz₃SnMe (ref. 10); 14, Benz₂SnPh₂.

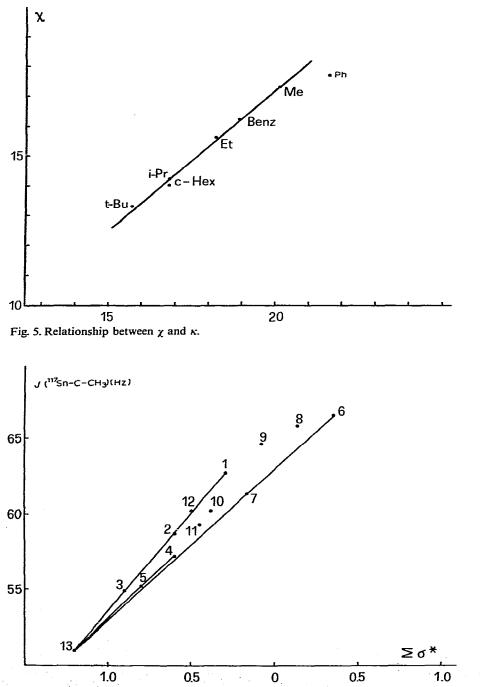


Fig. 6. $J[^{117}Sn-C(C^{1}H_{3})_{3}]$ coupling constants as a function of $\Sigma\sigma^{*}$ for mixed tetraorganotins. 1, t-BuSnMe_3; 2, t-Bu_2SnMe_2; 3, t-Bu_3SnMe; 4, t-BuSnEt_3; 5, t-Bu_2SnEt_2; 6, t-BuSnBenz_3; 7, t-Bu_2SnBenz_2; 8, t-BuSnMeBenz_2; 9, t-BuSnMe_2Benz; 10, t-Bu_2SnMeBenz; 11, t-BuMe_2Sn-cyclo-Hex; 12, t-BuMe_2Sn-cyclo-Pent; 13, t-Bu_4Sn (calcd.)

ORGANOMETALLIC COMPOUNDS. XXXI

Compound	J(¹¹⁷ SnCH ₂ Ph) (Hz)	$J_{\rm calc}^{117}$ (Hz)	J ¹¹⁹ (Hz)	$\delta(CH_2 Ph)$ (ppm)	$\Sigma \sigma^*$	Ref.
Benz ₃ Sn-cyclo-Hex	54.5	[54.6]	56.7	2.16	+0.495	
Benz, Sn-cyclo-Hex,	52.7	52.5	54.7	2.21	+0.13	
BenzSn-cyclo-Hex3	50.6	50.4	53.3	2.27	-0.235	
BenzSn-t-BuMe ₂	56.1	55.9		2.28	0.085	
BenzSn-t-Bu ₂ Me	51.3	51.5	53.2	2.30	-0.385	
Benz ₂ Sn-t-Bu ₂	50.4	[50.3]	52.5	2.30	-0.170	
Benz ₂ Sn-t-BuMe	54.7	54.7	56.7	2.27	+0.13	
Benz ₃ Sn-t-Bu	53.0	53.5	55.0	2.19	+0.345	4
BenzSnPh ₃	64.8	[64.8]	67.0		2.015	
Benz ₂ SnPh ₂	62.4	62.1	65.0	2.62	1.630	
Benz ₃ SnPh	59.6	59.4	62.30	2.34	1.245	

TABLE 3

NMR SPECTRA OF THE BENZYL PART OF MIXED TETRAORGANOTINS

TABLE 4

NMR SPECTRA OF THE TERT-BUTYL PART OF MIXED TETRAORGANOTINS

Compound	J(¹¹⁷ Sn–C–CH ₃) (Hz)	$J_{\rm calc}^{117}$ (Hz)	J ^{1 19} (Hz)	δ(t-Bu) (ppm)	$\Sigma \sigma^*$
t-BuSnMe ₃	62.7	62.7	65.7	1.09	-0.30
t-BuSnEt ₃	57.2	57.3	66.0	1.12	-0.60
t-Bu ₂ SnMe ₂	58.7	58.8	61.4	1.20	-0.60
t-Bu ₂ SnEt ₂	55.2	(55.2)	57.7	1.17	-0.80
t-Bu ₃ SnMe	54.9	(54.9)	57.3		-0.90
t-BuSnBenz ₃	66.5	66.6	69.6	0.99	+0.345
t-Bu ₂ SnBenz ₂	61.3	(61.4)	64.0	1.10	-0.170
t-BuSnMeBenz ₂	65.8	65.3	68.8	1.07	+0.130
t-BuSnMe ₂ Benz	64.6	64.0	67.6	1.08	-0.085
t-Bu ₂ SnMeBenz	60.2	60.1	63.0		-0.385
t-BuMe ₂ Sn-cyclo-Hex	59.3	(59.3)	61.0	1.100	-0.45
t-BuMe ₂ Sn-cyclo-Pent	60.2	(60.2)	63.0	1.105	-0.50

derived from these results are given in Table 2. $J(SnCH_2\phi)[\phi CH_2SnRR'R''] = \kappa_R + \kappa_{R'} + \kappa_{R''}$

Figure 5 shows the relationship between χ and κ . The relationship is satisfactorily linear except for the phenyl group.

The $J[Sn-C(CH_3)_3]$ coupling constant

A J vs. $\Sigma \sigma^*$ graph can also be drawn for the tert-butyl coupling constant (see Fig. 6). As for the methyl- and benzyl-derivatives, ζ -values can be calculated for different alkyl radicals, reflecting the influence of these radicals on the $J(SnC-CH_3)$ coupling constant (see Table 2). To use the relationship $\zeta_R = J(SnC-CH_3) [(CH_3)_3-CSnt-Bu_2R] - 2\zeta_{t-Bu}$ it is necessary to know the tert-butyltin coupling constant for tetra-tert-butyltin. It can be obtained by extrapolation, using the additivity rule $(3 \zeta_{t-Bu})$ or by the procedure described in ref. 3, and is found to be 51.0 Hz. Attempts are being made in our laboratory to synthesize tetra-tert-butyltin by a method fundamentally very different from those previously used¹⁶.

EXPERIMENTAL

All the compounds were made by standard procedures¹⁷, involving the reactions of Grignard compounds on organotin halides^{4,16,18}. The required organotin halides R₃SnX were generally made by bromodemetallation in a polar solvent such as methanol, to avoid dibromination and to increase the selectivity¹⁸. However, for tetracyclopentyl- and tetracyclohexyltins, which are quite insoluble in alcohols, chloroform was used. In addition to the expected triorganotin bromide, the dibromide is also formed even when only 80% of the stoichiometric amount of bromine is added. The following procedure is recommended for obtaining pure R₃SnX: 5 g of the mixture of R₄Sn, R₃SnX, and R₂SnX₂ are put on to a column (Φ =4 cm, *l*=60 cm) packed with Al₂O₃ and eluted with petroleum ether (60–65°) to give unreacted R₄Sn. Further elution with ethanol or isopropanol affords an alcoholic solution of very pure (>99%)R₃SnX, the R₂SnX₂ staying on the column. The alcohol is then evaporated and progressively replaced by benzene to avoid the disproportion reaction¹⁹ 2R₃SnX \rightleftharpoons R₂SnX₂ + R₄Sn which seems to occur with highly concentrated alcoholic solutions of R₃SnX. The benzene solution is then distilled.

The NMR spectra were recorded on a Varian A60 apparatus (with 5% solutions in CCl_4 , and tetramethylsilane as internal standard).

All the new compounds were further characterized by mass spectrometry, and their purities have been checked by GLC.

ACKNOWLEDGEMENTS

The authors are indebted to Prof. J. Reisse, Prof. J. Nasielski and Dr. R. Ottinger for valuable suggestions, and to Mr. R. Polain for recording the spectra.

Financial help from the "Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture" (I.R.S.I.A.) is gratefully acknowledged (M.D.C.).

REFERENCES

- 1 M. GIELEN, Ind. Chim. Belge, 36 (1971) 815.
- 2 J. R. HOLMES AND H. KAESZ, J. Amer. Chem. Soc., 83 (1961) 3903.
- E. V. VAN DEN BERGHE AND G. P. VAN DER KELEN, J. Organometal. Chem., 11 (1968) 479.
- 3 M. GIELEN, M. DE CLERCQ AND J. NASIELSKI, Bull. Soc. Chim. Belg., 78 (1969) 237.
- 4 M. GIELEN, M. R. BARTHELS, M. DE CLERCQ AND J. NASIELSKI, Bull. Soc. Chim. Belg., 80 (1971) 189.
- 5 L. VERDONCK AND G. P. VAN DER KELEN, Ber. Bunsenges. Phys. Chem., 69 (1965) 478.
- 6 W. MCFARLANE, J. Chem. Soc. A, (1967) 528.
- 7 G. SINGH, Fourth International Conference on Organometallic Chemistry, Bristol, 1969. J. C. MAIRE, J. Organometal. Chem., 7 (1967) 415.
- J. C. IVIAIRE, J. Organometal. Chem., 7 (1907) 415.
- 8 M. GIELEN, M. R. BARTHELS, M. DE CLERCQ, C. DEHOUCK AND G. MAYENCE J. Organometal. Chem., 34 (1972) 315.
- 9 H. MOKHTAR-JAMAĪ, Mémoire de Licence (U.L.B., 1970), unpublished results.
- 10 K. SISIDO, T. MIYANISI, K. NABIKA AND S. KOZIMA, J. Organometal. Chem., 11 (1968) 281.
- 11 T. VLADIMIROFF AND E. R. MALINOVSKI, J. Chem. Phys., 42 (1965) 440.
- 12 N. GOFFIN AND J. TOPART, unpublished results.
- 13 M. GIELEN, M. DE CLERCQ AND R. FOSTY, to be published.
- 14 H. S. GUTOVSKY, V. D. MOCHEL AND B. G. SOMERS, J. Chem. Phys., 36 (1962) 1153.
 - B. G. SOMERS, Diss. Abstr., 22 (1962) 3430.

ORGANOMETALLIC COMPOUNDS. XXXI

- 15 M. DE CLERCO, Ph.D. Thesis (U.L.B.), to be published.
- 16 S. A. KANDIL AND A. L. ALLRED, J. Chem. Soc. A, (1970) 2987.
- 17 M. GIELEN AND J. NASIELSKI, in A. K. SAWYER, (Ed.), Organotin Compounds, Organotin Compounds with Sn-C-bonds without Sn-Sn bonds. Vol. 3, Marcel Dekker, New York, 1971.
- 18 S. BOUE, M. GIELEN AND J. NASIELSKI, Tetrahedron Lett. (1968) 1047; M. GIELEN, J. NASIELSKI AND J. TOPART, Recl. Trav. Chim. Pays-Bas, 87 (1968) 1051; S. BOUE, M. GIELEN, J. NASIELSKI, J. P. LIEUTE-NANT AND R. SPIELMANN, Bull. Soc. Chim. Belg., 78 (1969) 135.
- 19 M. T. SCIOT, Mémoire de Licence (U.L.B., 1968), unpublished results.
- 20 E. JERONNEZ, Mémoire de Licence (U.L.B., 1970), unpublished results.
- 21 S. BOUE, M. GIELEN AND J. NASIELSKI, Bull. Soc. Chim. Belg., 76 (1967) 559.
- 22 W. P. NEUMANN, The Organic Chemistry of tin, Wiley, London, 1970.